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HYDROSTATIC STABILITY OF THE LIQUID-VAPOR INTERFACE 

I N  A LOW-ACCELERATION FIELD 

by W i l l i a m  J. Masica, Joseph D. Derdul, and Donald A. Petrash 

Lewis Research Center 

SUMMARY 

As a par t  of the  overa l l  study of t he  behavior of rocket engine propel- 
l a n t s  stored i n  space vehicle tanks w h i l e  exposed t o  weightlessness, a study 
was conducted t o  determine the  hydrostatic s t a b i l i t y  charac te r i s t ics  of t he  
liquid-vapor interface i n  a cy l indr ica l  container when subjected t o  low accel-  
e ra t ion  disturbances ( l e s s  than 1 g) applied p a r a l l e l  t o  the  longitudinal ax is  
of the  cylinder. 

The Bond number c r i t e r ion ,  a dimensionless parameter consisting essen- 
t i a l l y  of the r a t i o  of acceleration t o  capi l la ry  forces ,  was found t o  be va l id  
f o r  predicting the  regions of hydrostatic s t a b i l i t y  of the  liquid-vapor in te r -  
face.  The c r i t i c a l  Bond number delineating the  s tab le  and unstable regions was 
independent of the  applied acceleration f i e l d  and was ver i f ied  t o  be 0.84 fo r  
solid-liquid-vapor systems possessing Oo contact angles. 

INTRODUCTION 

The NASA Lewis Research Center i s  current ly  conducting an investigation of 
the  phenomena associated with the  behavior of l iqu id  rocket-engine propellants 
stored i n  space-vehicle tanks tha t  a re  exposed t o  weightlessness (zero-gravity) 
during coasting periods. The s table  equilibrium configuration of t he  l iquid-  
vapor interface has been predicted by analysis  ( r e f s .  1 t o  3) and has been ex- 
perimentally determined ( r e f s .  4 t o  7 ) .  The preceding ana ly t ica l  and experi- 
mental s tudies  have considered the  s t a t i c  equilibrium configuration of the 
liquid-vapor interface f o r  conditions under which no external  accelerations 
disturbed the  system a f t e r  t h rus t  cutoff .  
w i l l  be subjected t o  a number of accelerat ion perturbations as missions grow 
more complex. Orientation maneuvers, shutdown t rans ien ts ,  vehicle separations, 
rendezvous dockings, crew and equipment movement, and even atmospheric drag i n  
low Earth o r b i t s  a re  typ ica l  of the  operations t h a t  may w e l l  displace the  pro- 
pe l lan t  from the desired location. I n  general, these disturbances w i l l  occur 
at a l l  angles t o  the  vehicle t h rus t  axis and w i l l  tend t o  disrupt  t he  estab- 
l ished liquid-vapor interface and cause vapor t o  move i n  the  d i rec t ion  of t he  
acceleration. 

Rea l i s t ic  space vehicles,  however, 

The results of an experimental investigation, conducted a t  1 g (ref. 8 ) ,  
of t h e  hydrostatic s t a b i l i t y  charac te r i s t ics  of t he  liquid-vapor interface i n  



a cylinder ver i f ied  the  contention t h a t  t h e  Bond number c r i t e r ion  ( the  r a t i o  of 
accelerat ion t o  capi l la ry  forces)  i s  va l id  fo r  determining the  regions of in-  
t e r f ace  s t a b i l i t y .  The invest igat ion establ ished fur ther  t h a t  t he  numerical 
value of the  c r i t i c a l  Bond number a t  which i n s t a b i l i t y  of t h e  liquid-vapor in- 
t e r f ace  occurs depends on the  d i rec t ion  of the  grav i ta t iona l  f i e l d  with respect 
t o  the  interface.  The absolute value of t he  c r i t i c a l  Bond number varied from 
0.84 when the  cylinder was a t  a 180' or ien ta t ion  t o  the  grav i ta t iona l  f i e l d  t o  
e s sen t i a l ly  i n f i n i t y  f o r  a 0' orientat ion.  
ta ined by using the  Earth 's  g rav i ta t iona l  f i e l d  t o  provide the  accelerat ion 
disturbance; hence, t h e  Bond number c r i t e r i o n  was shown t o  be va l id  a t  one 
value of acceleration, 980.2 centimeters per second squared. 
ve r i fy  completely the  Bond number c r i t e r i o n  the  funct ional  r e l a t i o n  of acceler-  
a t i o n  must be validated.  

The resul-ts i n  reference 8 w e r e  ob- 

In  order t o  

The purpose of t h i s  report  i s  t o  present the  r e s u l t s  of an experimental 
invest igat ion of t h e  hydrostatic s t a b i l i t y  of t he  liquid-vapor interface i n  a 
low-acceleration f i e l d  (less than 1 g ) .  The accelerat ion was applied coinci- 
dent t o  t h e  longitudinal axis of a cylinder, normal t o  the  liquid-vapor in t e r -  
face,  and pos i t ive ly  directed from t h e  vapor t o  t h e  l iquid.  The invest igat ion 
was  conducted t o  ve r i fy  the  Bond m"er  c r i t e r i o n  as a function of accelerat ion 
and l i qu id  parameters and thus t o  ve r i fy  t h a t  t he  c r i t i c a l  value of t he  Bond 
number a t  which i n s t a b i l i t y  of t he  liquid-vapor interface previously occurred 
(ref. 8 )  i s  a constant independent of the  applied accelerat ion f ie ld .  This ex- 
perimental invest igat ion w a s  conducted i n  a zero-gravity drop-tower f a c i l i t y  t o  
allow the  liquid-vapor in te r face  t o  form i t s  zero-gravity equilibrium configu- 
r a t ion  and t o  provide a proper environment f o r  t he  creat ion of t he  desired low- 
accelerat ion f i e l d s .  

BOND NUMBER CRITEBION 

The Bond number c r i t e r ion ,  consisting e s sen t i a l ly  of t he  r a t i o  of acceler-  
a t ion  t o  capi l la ry  forces ,  can be formulated as 

ApaR2 BO = - 
(5 

where Bo i s  the  Bond number, Ap i s  the  densi ty  difference between the  l iqu id  
and vapor phases, a i s  the  applied accelerat ion f i e l d ,  R i s  the  radius  of t he  
cy l indr ica l  geometry, and 0 i s  t h e  liquid-vapor surface tension. The density 
of t he  vapor phase i s  frequently neglected, and the  Bond number i s  defined as 

aR2 BO = - P 
where p i s  the  spec i f ic  surface tension. The r e s u l t s  of t h e  experimental in- 
vest igat ion reported i n  reference 8 yielded a c r i t i c a l  value f o r  the  Bond num- 
ber of 0.84 f o r  one value of acceleration, the  a'cceleration f i e l d  due t o  grav- 
i t y .  This value was  obtained when t h e  accelerat ion was  directed from the  vapor 
t o  the  l i qu id  phase, normal t o  the  liquid-vapor interface.  The data  f o r  sol id-  
liquid-vapor systems possessing 0' contact angles ( r e f .  8) are shown i n  f i g -  
ure 1. The c r i t i c a l  diameter a t  which i n s t a b i l i t y  occurred (generally charac- 
t e r i zed  by a breakage of the  interface and by a flow of l iqu id  from t h e  cylin- 
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Figure 1. - Stability characteristics in vertical cylinder at 1 g. 

number i s  a l i nea r  function of acceleration, 

Figure 2. - 100-Foot drop tower. 

der)  was  a function of t he  spe- 
c i f i c  surface tension of the  l i q -  
uid; t he  grav i ta t iona l  accelera- 
t i o n  was constant f o r  t h e  experi- 
ment. The value of t he  c r i t i c a l  
Bond number thus defines the r e -  
gions of hydrostatic s t a b i l i t y  of 
the  liquid-vapor interface f o r  
t he  cylinders investigated and 
the  d i rec t ion  of t he  applied 
gravi ta t ional  acceleration. 

The study i n  reference 8 and 
the  present invest igat ion neces- 
s i t a t e  the  analogy between the  
gravitational-body-force density 
pg imposed on a column of l i qu id  
i n  a capi l la ry  tube and the  iner-  
t i a l  acceleration f i e l d  imposed 
on a propellant tank i n  a weight- 
l e s s  environment. If the  Bond 

the  equation for t he  c r i t i c a l  Bond 
number becomes 

aR2 BO,, = 0.84 = - 
P (3) 

Because of the  common s t ab i l i z ing  
parameter of t he  liquid-vapor SUT- 
face energy, t he  c r i t i c a l  Bond num- 
ber i n  equation (3) should be inde- 
pendent of the  form of the  accelera- 
t i o n  f i e l d .  Although the  ac tua l  
process of the  disruption of the  
liquid-vapor interface i n  each par- 
t i c u l a r  accelerat ion f i e l d  may re- 
quire a more elaborate physical  de- 
sc r ip t ion ,  it appears t o  be immate- 
r ia l  from the point of view of t he  
liquid-vapor interface whether t he  
containment geometry or t he  l i qu id  
i s  accelerat ing because the r e l a t i v e  
motion between the  two i s  completely 
unaffected. 

I n  order t o  ve r i fy  t h i s  conten- 
t ion ,  accelerat ion leve ls  of approx- 
imately 0.1 and 0.01 g w e r e  used to 
extend the  s t a b i l i t y  charac te r i s t ics  
obtained i n  reference 8. The ac tua l  
accelerations used i n  t h i s  study, as 
determined by the  ca l ibra t ion  proce- 
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dure, were  83.3k0.39 and 9.80k0.20 centimeters per second squared. The c r i t i -  
c a l  radius  a t  which i n s t a b i l i t y  occurs was calculated by asswning equation (3)  
t o  be valid.  Cylinders with r a d i i  above and below t h i s  value w e r e  then em- 
ployed i n  t h e  experiment package. The method used t o  obtain the  data  resu l ted  
i n  a range of cylinder diameters i n  which s t a b i l i t y  or i n s t a b i l i t y  w a s  ob- 
served. 

APPARATUS AND PROCEDURE 

Test F a c i l i t y  

The experimental invest igat ion was conducted i n  the  Lewis  Research Center 
drop tower ( f i g .  2 ) ,  which provides a usable drop distance of 85 f e e t ,  or 2 . 3  
seconds of unguided free f a l l .  In  t h i s  f a c i l i t y ,  

r Wire-release 
mechanism Music-w i re  

support -..- .. 
p$*Tj 

Spacer 

Drag shield 

(a) Position pr ior  to test drop. 

-GJ 
(c) Application of low-acceleration field. 

t- r 
I B,FF, -8 
(b) Free fall (formation of zero-gravity 

configuration). 

W 
(d) Position after test drop. 

Figure 3. - Schematic drawing showing sequential position of experiment package and drag 
shield before, during, and after test drop. 
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air  drag on the  experiment 
package is  kept below 10-5 g 
by allowing the  package t o  
f r e e  f a l l  inside a protec- 
t i v e  drag shield.  The drag 
shield i s  designed with a 
high r a t i o  of weight t o  
f r o n t a l  area and a r e l a -  
t i v e l y  low drag coeff ic ient  
so  t h a t  the  deviation from 
t r u e  free f a l l  would be min- 
imized. The r e l a t i v e  posi-  
t i o n  of t he  experiment pack- 
age with respect t o  the  drag 
shield during a t e s t  drop i s  
presented i n  f igure  3. The 
experiment package and t h e  
drag shield f a l l  simulta- 
neously, yet  a re  completely 
independent of each other 
during the  drop. To compen- 
sa t e  f o r  t he  added distance 
the  package t r ave l s  r e l a t i v e  
t o  the  drag shield because 
of t he  low accelerations im- 
posed on t h e  package, spac- 
ers w e r e  added t o  t h e  drag 
shield ( f ig .  4) .  

Exper iment Package 

The experiment package 
( f ig .  5)  i s  a self-contained 
uni t  equipped t o  recover 
photographic data.  Borosil- 
i c a t e  glass  cylinders con- 
ta in ing  the  t e s t  l i qu id  are 



Drag-sh ield 

weights 7. 
I--:---- Hoist counterbalance 

cables -&-- 

/' 

1 

support wire - / *  k K 

,Spacer for 0.01-g acceleration - 
>Spacer for  0.1-g acceleration 

I 

$(CI 6-fl maple spikes - 

c 

(a1 0.1-(1 assembly. C-66769 (b) 0.01-g assembly. C-66770 

Figure 4. - Experiment package in air-drag shield. 

Center of mass axis -.I 

Figure 5. - Experimeni package. 

su i tab ly  mounted i n  a box 
having a dull white in t e r io r  
and are  ind i rec t ly  illumin- 
a ted t o  allow a 16-millimeter 
high-speed motion-picture 
camera t o  photograph t h e  l i q -  
uid behavior during the  drop. 
Low accelerations are imposed 
on the  experiment by expel- 
l i n g  compressed nitrogen gas 
from a th rus t  nozzle located 
on top  of t he  package so t h a t  
t he  th rus t  ax i s  i s  coincident 
with the  center-of -mass axis. 
The thrus te r  system consis ts  
of a high-pressure accumu- 
l a to r ,  a pressure regulator ,  
and a solenoid valve. Power 
t o  operate the l i gh t s ,  cam- 
era, and solenoid i s  obtained 
from rechargeable nickel- 
cadmium ba t t e r i e s  carr ied on 
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tension 
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0,  
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18.6 

26.8 

22.3 

49.6 

Trichlorotrifluoroethane 

Carbon te t rachlor ide  

Ethanol, anhydrous 

bEthanol, 10 percent 
'Vapor phase, air. 

Density 
a t  20' c 

g7&3 

1.579 

1.595 

.7893 

.9847 

Specif ic  surface 
tension,  

surface tension 
densi ty  ' 

u/p, cm3/sec2 

11.78 

16.79 

28.25 

50.37 

t he  experiment package. 

Test Liquids 

The l iqu ids  used and 
t h e i r  physical  propert ies  
per t inent  t o  t h i s  study 
a re  given i n  the  t ab le  at  
the  l e f t .  Most rocket- 
engine propellant s have 
0' contact angles on the  
types of tank mater ia ls  
current ly  being employed 
i n  rocket vehicle design; 

bPercentage composition by volume with d i s t i l l e d  water I 

therefore,  tes t  l iqu ids  w e r e  chosen t h a t  have a Oo contact angle with boros i l i -  
cate  glass .  
photographic qual i ty;  t h e  addi t ion had no measurable e f f ec t  on the  l i qu id  prop- 
e r t i e s .  

A s m a l l  quant i ty  of dye w a s  added t o  each t e s t  l i qu id  t o  improve 

Operating Procedure 

Prior  t o  each tes t  drop, t h e  experiment package w a s  carefu l ly  balanced t o  

r- Photoresistive switch 

Figure 6. - Thrust  calibration system. 
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locate  the  center-of-mass ax i s  on a 
l i n e  coincident with the  t h r u s t  
ax is  ( f ig .  5 ) .  The magnitude of 
t he  th rus t  was  determined by means 
of the  th rus t  ca l ibra t ion  system 
shown i n  f igure  6. The experiment 
package w a s  placed on a f r i c t i o n -  
l e s s  air bearing so t h a t  t h e  th rus t  
was incident on a load c e l l  mounted 
i n  l i n e  with the  nozzle. Since a 
physical connection t o  the  package 
would introduce a drag f ac to r ,  the  
solenoid valve was  actuated by a 
t rans is tor ized  photoresist ive 
switch i n  the  e l e c t r i c a l  control 
un i t .  

Contamination of the  g lass  
surfaces and l iqu ids ,  which could 
a l t e r  t he  surface tension and con- 
t a c t  angle of t he  t e s t  l iqu id ,  w a s  
carefu l ly  avoided. A preliminary 
cleaning of the  glassware i n  a de- 
tergent  solut ion was  followed by an 
immersion i n  hot chromic acid and 
f i n a l l y  by an ul t rasonic  cleaning 
i n  a solut ion of detergent and d is -  
t i l l e d  water. The cylinders were 
then r insed i n  d i s t i l l e d  water, 
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dried i n  a warm air  dryer, and f i l l e d  t o  the  desired l e v e l  with the t e s t  l i q -  
uid. 

After the  cylinders were  mounted i n  the  l ight  box, t he  experiment package 
w a s  placed inside t h e  drag shield.  The e n t i r e  assembly, consisting of t he  drag 
shield and the  experiment package, w a s  counterbalanced ( f ig .  4) because the  
center of m a s s  of t he  experiment package was  located 2 inches off t he  v e r t i c a l  
geometric axis .  The counterbalancing ensured t h a t  the  drag shield and package 
would not tilt when suspended from the  support w i r e  on the eighth f loor .  Rota- 
t i o n  of the  drag shield due t o  the  nonsymnetric m a s s  d i s t r ibu t ion  during the  
f a l l  w a s  negligible.  I n i t i a t i o n  of f r e e  f a l l  w a s  accomplished by pressuriza- 
t i o n  of an a i r  cylinder t h a t  forced a knife  edge in to  the  support w i r e  and 
caused the  wire t o  fa i l .  The appl icat ion of t he  accelerat ion th rus t  was pre- 
ceded by a 1-second time delay t o  allow the  interface t o  form i t s  zero-gravity 
configuration. This time was generally not suf f ic ien t  t o  ensure the  complete 
absence of o sc i l l a to ry  interface motion toward the  unique time-independent, 
zero-gravity interface configuration. The time, however, was adequate t o  allow 
f o r  su f f i c i en t ly  damped interface motion so t h a t ,  when the  low-acceleration 
f i e l d  was applied t o  the  experiment, t h e  subsequent behavior of the  interface 
was not observably influenced by res idua l  t rans ien t  e f fec ts .  For the  range of 
cylinder diameters and l i qu id  properties used, the  1-second formation time was 
a su i tab le  compromise between an adequate formation period and a suf f ic ien t  
time i n  t h e  low-acceleration f i e l d  t o  observe s t a b i l i t y  o r  i n s t ab i l i t y .  

RESULTS 

The r e s u l t s  of t he  investigation are shown i n  f igure 7, where the observed 
s tab le  and unstable diameters a re  plot ted as a function of t he  r a t i o  of spe- 
c i f i c  surface tension t o  acceleration. The c r i t e r i o n  f o r  s t a b i l i t y  under the 

.1 . 2  

I- __ .1  

Ratio of speci 
.6 , 

c surface 

893:: I 
I I I  

1 2 4 6 8 1 0  
msion to acceleration, p/a, cm2 

+ - -  .01 4 
Nominal acceleration, gas 

Figure 7. - Stability characteristics in a cylinder at low-acceleration fields. 

imposed acceleration was t h a t  
the interface configuration be 
independent of time, or t h a t  the  
veloci ty  at every point on the  
liquid-vapor interface be zero, 
tha t  is, t h a t  the interface con- 
f igura t ion  remain ident ica l  t o  
the  s t a t i c  zero-gravity equi l ib-  
r i u m  configuration. Conversely, 
the  c r i t e r i o n  f o r  i n s t a b i l i t y  
w a s  t h a t  the  interface configu- 
r a t i o n  be time dependent during 
the  e n t i r e  duration of the ap- 
p l ied  acceleration; the  f i n i t e  
liquid-vapor interface ve loc i ty  
indicates  the  disruption of t he  
interface.  

Although the  dynamic behav- 
i o r  of t h e  disruption of the 
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Cylinder 1 2 

(a) 1-g configuration. 

(b) 0-g configuration, 

Accel- 
eration 

I 

(c) 0.01-g configuration; 
acceleration applied for 1.09 
seconds; cylinder 1 remains 
stable; cylinder 2 is unstable. 

Figure 8. - Interface stability of 
t r ich lo rot r if1 uo roet hane with 
cr i t ical  diameter of 20.1 mi l l i -  
meters. Acceleration, 9.80 
centimeters per second squared; 
diameter of cylinder 1, 19.05 
millimeters; diameter of cylinder 
2, 26.3 millimeters. 

liquid-vapor interface was  not of immediate in t e re s t  
i n  t h i s  investigation, it w a s  apparent from the 
analysis  of the  photographic data  t h a t  t he  ve loc i ty  
of t h e  interface when i n s t a b i l i t y  did occur was  a 
function of t he  Bond number. For a par t icu lar  s e t  of 
data  points,  t he  only variable i n  t h e  experiment was  
t he  diameter of t he  cylinders. The la rger  t he  diam- 
eter ( i .e .  , above t h e  cr i t ical  diameter as calculated 
from eq. ( 3 ) ) ,  t he  greater the  observed d i s to r t ion  of 
t he  interface;  therefore,  as the  c r i t i c a l  diameter 
w a s  approached negatively, t he  observed ve loc i ty  and 
t o t a l  d i s to r t ion  of t he  in te r face  became. smaller. In  
order t o  avoid any poss ib i l i t y  t h a t  the  i n s t a b i l i t y  
phenomenon w a s  of a t rans ien t  nature, as observed i n  
the  l imited t i m e  avai lable  f o r  t he  applied accelera- 
t i o n  ( i . e . ,  where the  equilibrium zero-gravity con- 
f igura t ion  may possibly tend t o  re-form i n  time 
despi te  t h e  applied accelerat ion) ,  a t o t a l  d i s to r t ion  
of t h e  interface configuration of a minimum of 1 d i -  
ameter was adopted as an adequate c r i t e r i o n  f o r  in-  
s t a b i l i t y .  The diameter indicat ive of t h i s  c r i t e r i o n  
f o r  i n s t a b i l i t y  was ,  therefore ,  t h e  only value 
plot ted.  

The curve i n  f igure  7 i s  t h a t  of equation (3) , 
and under t h e  s t ipu la t ions  attached t o  t h e  sets of 
data  points,  t he  curve properly del ineates  the  r e -  
gions of hydrostatic S t a b i l i t y  of t he  liquid-vapor 
interface.  Representative photographs i l l u s t r a t i n g  
the  hydrostatic s t a b i l i t y  of trichlorotrifluoroethane 
under an imposed accelerat ion of 9.80 centimeters per 
second squared a re  shown i n  f igure  8. The c r i t i c a l  
diameter, obtained from equation ( 3 ) ,  i s  20 .1mi l l i -  
meters. Two cylinders, having diameters above and 
below t h i s  value, 26.3 and 19.05 millimeters, re- 
spectively,  were employed t o  experimentally obtain 
t h e  photographs of interface s t a b i l i t y  phenomena. 
The bracketing of t he  c r i t i c a l  diameter at which in- 
t e r f ace  i n s t a b i l i t y  occurs is  unmistakably evident 
from f igure  8 (c ) .  The in te r face  configuration i n  t h e  
s tab le  region has e s sen t i a l ly  remained unchanged from 
the  zero-gravity configuration, and t h e  time indepen- 
dence i s  indicated by the  zero ve loc i ty  of the  in t e r -  
face.  l'he interface configuration i n  the unstable 
region indicates  a d i s to r t ion  of  the interface 
greater  than the  diameter of the  cy l indr ica l  con- 
t a ine r  i n  the  time available f o r  t he  applied low- 
accelerat ion f i e l d .  The time dependence i s  exhibited 
by a f i n i t e  ve loc i ty  a t  each point on the  l iquid-  
vapor interface,  which causes the l iqu id  t o  be d is -  
placed toward the  top of the  cylinder. The disrup- 
t i o n  of t he  liquid-vapor interface i n  the  unstable 
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region was i n  a l l  instances symmetrical about the  longi tudinal  ax is  of t he  cyl- 
inder. The veloci ty  of t h e  unstable interface appeared t o  be a function of the  
Bond number calculated by employing the  cylinder diameters used i n  the  experi- 
ment. 

DISCUSSION 

Verif icat ion of Bond Number Cri ter ion 

The preceding r e s u l t s  ( f ig .  7)  and those obtained i n  reference 8 ( f ig .  1, 
p. 3) are combined i n  f igure  9. The r e s u l t s  of t he  experimental investigations 
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Figure 9. - Interface stability delineated by Bond number criterion. 
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indicate  t h a t  the Bond number 
c r i t e r i o n  i s  valid: f o r  pre- 
d ic t ing  the  region of hydro- 
s t a t i c  s t a b i l i t y  of the  
liquid-vapor interface.  Cor- 
r e l a t i o n  of the  experimental 
data points with the  curve 
given In  f igure  9 v e r i f i e s  
t h a t  the  c r i t i c a l  Bond number 
delineating the  regions of hy- 
d ros t a t i c  s t a b i l i t y  i s  a con- 
s t an t  independent of the  ac- 
celerat ion f i e l d .  The c r i t i -  
c a l  Bond number i s  properly 
given by equation (3) f o r  an 
accelerat ion applied p a r a l l e l  
t o  the  longitudinal ax i s  of a 
cy l indr ica l  geometry and for  
solid-liquid-vapor systems 
possessing 0' contact angles. 

10 

-- 

The a rb i t r a ry  c r i t e r i o n  of i n s t a b i l i t y  applied i n  t h i s  experimental in-  
vest igat ion indicates  a tolerance i n  the  radius  of t he  Bond number c r i te r ion .  
It i s  believed, however, that i f  more time had been avai lable  during which the  
low-acceleration f i e l d  could have been maintained, t he  c r i t e r ion  of i n s t a b i l i t y  
would be unnecessary, and cylinders whose r a d i i  nominally exceeded t h e  radius 
calculated from t h e  c r i t i c a l  Bond number at  a given accelerat ion f i e l d  and spe- 
c i f i c .  surface tension would have displayed t h e  i n s t a b i l i t y  phenomenon. The 
t o t a l  disrupt ion of t he  liquid-vapor interface would occur (although with a 
s m a l l  ve loc i ty) ,  t he  e n t i r e  column of the  l iqu id  being ul t imately displaced t o  
the  opposite s ide of the  cylinder. This be l ie f  was substantiated by an analy- 
sis of the photographic data  wherein f i n i t e  interface ve loc i t ies  w e r e  observed 
i n  a l l  t h e  cylinders whose r a d i i  exceeded the  calculated value given by the  
c r i t i c a l  Bond number, 0.84. 

Application 

A s  a r e s u l t  of these investigations,  it is  now possible t o  predict  t he  
c r i t i c a l  accelerat ion needed t o  disrupt  t h e  zero-gravity equilibrium interface 
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Figure 10. - Interface stability of anhydrous ethanol 
as function of acceleration. Specific surface ten- 
sion, 28.25 centimeters cubed per second souared. 

configuration i n  r e a l i s t i c  vehicle propel- 
l a n t  tanks. I n  f igure  10 a p lo t  i s  pre- 
sented of c r i t i c a l  accelerat ion against  
tank diameter f o r  one l i qu id  t h a t  i s  rep- 
resenta t  ive of many propellants.  The 
curve was obtained by applying the  Bond 
number c r i t e r i o n  t o  extend the  1-g data  
(ref. 8)  and t h e  drop-tower data obtained 
i n  t h i s  study t o  the  tank diameters t h a t  
are current ly  under consideration f o r  
space vehicles. It can be seen from f i g -  
ure 10 t h a t  f o r  space vehicles having tank 
diameters of the  order of 10 feet  
(304.8 em) accelerat ions greater  than 

t e r f ace  and cause the  propellant t o  be re- 
located.  

g will disrupt  t he  liquid-vapor in-  

SUMMARY OF RESULTS 

An experimental invest igat ion of the  
hydro s t a t i c  s t a b i l i t y  of t he  li quid-vapor 
interface i n  a cy l indr ica l  geometry was 
conducted i n  a low-acceleration f i e l d .  
Under t h e  s t ipu la t ions  t h a t  t he  applied 
accelerat ion f i e l d  is  directed p a r a l l e l  t o  
t h e  longitudinal axis of t he  cylinder nor- 

m a l  t o  t he  liquid-vapor in te r face  and t h a t  t he  solid-liquid-vapor system pos- 
esses a 0' contact angle, t he  invest igat ion yielded t h e  following r e s u l t s :  

1. The Bond number c r i t e r ion ,  consisting of t he  r a t i o  of accelerat ion t o  
capi l la ry  forces,  i s  va l id  f o r  predict ing the  regions of hydrostatic s t a b i l i t y  
of the  liquid-vapor interface.  

2. The c r i t i c a l  Bond number del ineat ing the  s tab le  and unstable regions 
i s  independent of the  applied accelerat ion f i e l d .  

3. The numerical value f o r  the  c r i t i c a l  Bond number at which i n s t a b i l i t y  
of t h e  liquid-vapor in te r face  occurs i s  0.84. . 

Lewis  Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, May 1 6 ,  1964 
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